95 resultados para Ribosomal-rna Gene

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different life-cycle stages of Trypanosoma brucei are characterized by stage-specific glycoprotein coats. GPEET procyclin, the major surface protein of early procyclic (insect midgut) forms, is transcribed in the nucleolus by RNA polymerase I as part of a polycistronic precursor that is processed to monocistronic mRNAs. In culture, when differentiation to late procyclic forms is triggered by removal of glycerol, the precursor is still transcribed, but accumulation of GPEET mRNA is prevented by a glycerol-responsive element in the 3' UTR. A genome-wide RNAi screen for persistent expression of GPEET in glycerol-free medium identified a novel protein, NRG1 (Nucleolar Regulator of GPEET 1), as a negative regulator. NRG1 associates with GPEET mRNA and with several nucleolar proteins. These include two PUF proteins, TbPUF7 and TbPUF10, and BOP1, a protein required for rRNA processing in other organisms. RNAi against each of these components prolonged or even increased GPEET expression in the absence of glycerol as well as causing a significant reduction in 5.8S rRNA and its immediate precursor. These results indicate that components of a complex used for rRNA maturation can have an additional role in regulating mRNAs that originate in the nucleolus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several pathways modulating longevity and stress resistance converge on translation by targeting ribosomal proteins or initiation factors, but whether this involves modifications of ribosomal RNA is unclear. Here, we show that reduced levels of the conserved RNA methyltransferase NSUN5 increase the lifespan and stress resistance in yeast, worms and flies. Rcm1, the yeast homologue of NSUN5, methylates C2278 within a conserved region of 25S rRNA. Loss of Rcm1 alters the structural conformation of the ribosome in close proximity to C2278, as well as translational fidelity, and favours recruitment of a distinct subset of oxidative stress-responsive mRNAs into polysomes. Thus, rather than merely being a static molecular machine executing translation, the ribosome exhibits functional diversity by modification of just a single rRNA nucleotide, resulting in an alteration of organismal physiological behaviour, and linking rRNA-mediated translational regulation to modulation of lifespan, and differential stress response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. (1) In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. (1) In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 2-year-old, female goat from Connecticut was submitted for necropsy with a 5-day history of pyrexia and intermittent neurologic signs, including nystagmus, seizures, and circling. Postmortem examination revealed suppurative meningitis. Histologic examination of the brain revealed that the meninges were diffusely infiltrated by moderate numbers of lymphocytes, macrophages, and fibrin, with scattered foci of dense neutrophilic infiltrate. Culture of pus and brainstem yielded typical mycoplasma colonies. DNA sequencing of the 16S ribosomal RNA gene revealed 99% sequence homology with Mycoplasma mycoides subspecies capri and Mycoplasma mycoides subspecies mycoides Large Colony biotype, which are genetically indistinguishable and likely to be combined as a single subspecies labeled M. mycoides subsp. capri. The present case is unusual in that not only are mycoplasma an uncommon cause of meningitis in animals, but additionally, in that all other reported cases of mycoplasma meningitis in goats, systemic lesions were also present. In the present case, meningitis was the only lesion, thus illustrating the need to consider mycoplasma as a differential diagnosis for meningitis in goats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tritrichomonas foetus, a parasite well known for its significance as venereally transmitted pathogen in cattle, has recently been identified as a cause of chronic large-bowel diarrhea in domestic cats in the US, UK, and, more recently, also in Norway. In a period of 3 months (October to December 2007), 45 cats of Switzerland suffering from chronic diarrhea were investigated for intestinal infections, including a search for trichomonads. A commercially available in vitro culture system was used to screen for infection, complemented with a PCR and subsequent amplicon sequencing to support speciation. The PCR is based upon amplification of a sequence derived from the internal transcribed spacer region 1 (ITS1) on the ribosomal RNA gene (rRNA) using primers designed to detect a broad range of genera and species belonging to the family of Trichomonadidae. The method was furthermore adapted to the uracil DNA glycosylase (UDG) system in order to prevent carry-over contamination and it included a recombinant internal control to track for inhibitory reactions. Eleven out of the 45 cats were culture-positive, as revealed by microscopic identification of trichomonadid organisms. One of the isolates was subjected to scanning electron microscopy and findings revealed the presence of three flagella, thus placing the isolate into the gender Tritrichomonas sp. PCR and subsequent amplicon sequencing were carried out with ten of the 11 isolates. A total homology with published T. foetus sequences was confirmed in all of the cases. T. foetus therefore appears to range among those organisms that can cause chronic diarrhea in cats in Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fasciola hepatica, also called the large liver fluke, is a trematode which can infect most mammals. Monitoring the infection rate of snails, which function as intermediate hosts and harbour larval stages of F. hepatica, is an important component of epidemiological studies on fascioliasis. For this purpose, DNA probes were generated which can be used for the detection of F. hepatica larvae in snails. Four highly repetitive DNA fragments were cloned in a plasmid vector and tested by Southern blot hybridization to the DNA of various trematodes for specificity and sensitivity. The probes Fhr-I, Fhr-II and Fhr-III hybridized only to F. hepatica DNA. Fhr-IV contained ribosomal RNA gene sequences and cross-hybridize with the DNA from various other trematode species. Squash blot analysis showed that the different probes were able to detect the parasite larvae in trematode-infected snails even as isolated single larvae. No signals were obtained in squash blots of uninfected snails. Probes Fhr-I, Fhr-II and Fhr-III are thus useful specific tools for studying the epidemiology of fascioliasis. The probe Fhr-IV, because of its broader spectrum, can be used to detect the larvae of a wide range of trematode species of waterbirds, which are the causative agents of swimmer's itch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our understanding of the relationships of microbial communities with their environments. While metagenomics aims to catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species. To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the economy of HTS platforms for metatranscriptomics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Actinobacillus pleuropneumoniae is an important respiratory pathogen causing pleuropneumonia in pig. The species is genetically characterized by the presence of 4 RTX (Repeats in the Structural ToXin) toxin genes: apxI, apxII, and apxIII genes are differentially present in various combinations among the different serotypes, thereby defining pathogenicity; the apxIV gene is present in all serotypes. Polymerase chain reaction (PCR)-based apx gene typing is done in many veterinary diagnostic laboratories, especially reference laboratories. The present report describes the isolation of atypical A. pleuropneumoniae from 4 independent cases from 2 countries. All isolates were beta-nicotinamide adenine dinucleotide (beta-NAD) dependent and nonhemolytic but showed strong co-hemolysis with the sphingomyelinase of Staphylococcus aureus on sheep blood agar. Classical biochemical tests as well as Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and sequence-based analysis (16S ribosomal RNA [rRNA] and rpoB genes) identified them as A. pleuropneumoniae. Apx-toxin gene typing using 2 different PCR systems showed the presence of apxIV and only the apxIII operon (apxIIICABD). None of the apxI or apxII genes were present as confirmed by Southern blot analysis. The 16S rRNA and rpoB gene analyses as well as serotype-specific PCR indicate that the isolates are variants of serotype 3. Strains harboring only apxIV and the apxIII operon are possibly emerging types of A. pleuropneumoniae and should therefore be carefully monitored for epidemiological reasons.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The genetic diversity of 115 Campylobacter coli strains, isolated from pigs of 59 geographical distant farms in Switzerland, were characterized on the basis of their DNA fingerprints and resistance to macrolides and fluoroquinolones. Sequence analysis showed that the macrolide-resistant isolates had a point mutation in the 23S ribosomal RNA (rRNA) genes (A2075G) and that the fluoroquinolone-resistant isolates had a point mutation in the gyrase gene gyrA (C257T). One fluoroquinolone-resistant strain had an additional transition mutation in the gyrB gene (A1471C). The flaA restriction fragment length polymorphism (RFLP) genotyping revealed that 57% of the isolates were genetically different. Point mutations in the 23S rRNA and gyrA genes could be found in both genetically distant and genetically related isolates. Additionally, isolates with and without point mutations were found within individual farms and on different farms. This study showed that the ciprofloxacin and erythromycin-resistant C. coli population present on the pig farms is not issued from a common ancestral clone, but individual Campylobacter strains have most likely mutated independently to acquire resistances under the selective pressure of an antibiotic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pasteurellaceae are bacteria with an important role as primary or opportunistic, mainly respiratory, pathogens in domestic and wild animals. Some species of Pasteurellaceae cause severe diseases with high economic losses in commercial animal husbandry and are of great diagnostic concern. Because of new data on the phylogeny of Pasteurellaceae, their taxonomy has recently been revised profoundly, thus requiring an improved phenotypic differentiation procedure to identify the individual species of this family. A new and simplified procedure to identify species of Actinobacillus, Avibacterium, Gallibacterium, Haemophilus, Mannheimia, Nicoletella, and Pasteurella, which are most commonly isolated from clinical samples of diseased animals in veterinary diagnostic laboratories, is presented in the current study. The identification procedure was evaluated with 40 type and reference strains and with 267 strains from routine diagnostic analysis of various animal species, including 28 different bacterial species. Type, reference, and field strains were analyzed by 16S ribosomal RNA (rrs) and rpoB gene sequencing for unambiguous species determination as a basis to evaluate the phenotypic differentiation schema. Primary phenotypic differentiation is based on beta-nicotinamide adenine dinucleotide (beta-NAD) dependence and hemolysis, which are readily determined on the isolation medium. The procedure divides the 28 species into 4 groups for which particular biochemical reactions were chosen to identify the bacterial species. The phenotypic identification procedure allowed researchers to determine the species of 240 out of 267 field strains. The procedure is an easy and cost-effective system for the rapid identification of species of the Pasteurellaceae family isolated from clinical specimens of animals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a case of tularemia in a common marmoset (Callithrix jacchus) diagnosed by determination of the isolate's 16S ribosomal RNA (rRNA) gene sequence. Pathological examination of the animal revealed a multifocal acute necrotizing hepatitis, interstitial nephritis, splenitis, and lymphangitis of the mandibular, retropharyngeal, and cervical and mesenteric lymph nodes. Moreover, multiple foci of acute necrosis were found in the epithelium of the jejunum and the interstitium of the lung. Bacteriological investigations revealed a septicemia. The isolated infectious agent was uncommon, not routinely diagnosed in our laboratory and therefore difficult to identify by conventional tools in a reasonable time and effort. thus, we decided to perform a genetic analysis based on the 16S rRNA gene sequence. Thereby, an infection with Francisella tularensis, the causative agent of tularemia, was unambiguously diagnosed. This shows the great advantage 16S rRNA gene sequencing has as a general identification approach for unusual or rare isolates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIM To characterize the subgingival microbiota within a cohort of adult males (n = 32) naïve to oral hygiene practices, and to compare the composition of bacterial taxa present in periodontal sites with various probing depths. MATERIAL AND METHODS Subgingival plaque samples were collected from single shallow pocket [pocket probing depth (PPD)≤3 mm] and deep pocket (PPD≥6 mm) sites from each subject. A polymerase chain reaction based strategy was used to construct a clone library of 16S ribosomal RNA (rRNA) genes for each site. The sequences of ca. 30-60 plasmid clones were determined for each site to identify resident taxa. Microbial composition was compared using a variety of statistical and bioinformatics approaches. RESULTS A total of 1887 cloned 16S rRNA gene sequences were analysed, which were assigned to 318 operational taxonomic units (98% identity cut-off). The subgingival microbiota was dominated by Firmicutes (69.8%), Proteobacteria (16.3%), and Fusobacteria (8.0%). The overall composition of microbial communities in shallow sites was significantly different from those within deep sites (∫-Libshuff, p < 0.001). CONCLUSIONS A taxonomically diverse subgingival microbiota was present within this cohort; however, the structures of the microbial communities present in the respective subjects exhibited limited variation. Deep and shallow sites contained notably different microbial compositions, but this was not correlated with the rate of periodontal progression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Species of the family Pasteurellaceae play an important role as primary or opportunistic, predominantly respiratory, pathogens in domestic and wild animals. Some of them cause severe disease with high economic losses in commercial animal husbandry. Hence, rapid and accurate differentiation of Pasteurellaceae is important and signifies a particular challenge to diagnostic laboratories. Identification and differentiation of Pasteurellaceae is mostly done using phenotypic tests or genetic identification based on sequence similarity of housekeeping genes, such as the rrs gene encoding the 16S ribosomal RNA (16S rRNA). Both approaches are time consuming, laborious, and costly, therefore often delaying the final diagnosis of disease or epidemics. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry represents an alternative rapid and reliable method for the differentiation of most members of the family Pasteurellaceae. It is able to differentiate within a few minutes the currently known 18 genera and most of the over 60 species and subspecies of Pasteurellaceae including many members encountered in veterinary diagnostic laboratories. A few closely related species and subspecies that cannot be discriminated by MALDI-TOF are easily identified further by complementary simple tests, such as hemolysis done simultaneously or routinely during pathogen isolation.